skip to main content


Search for: All records

Creators/Authors contains: "Rashid, M. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dry and wet extremes (i.e., droughts and floods) are the costliest hydrologic hazards for infrastructure and socio-environmental systems. Being closely interconnected and interdependent extremes of the same hydrological cycle, they often occur in close succession with the potential to exacerbate hydrologic risks. However, traditionally this is ignored and both hazards are considered separately in hydrologic risk assessments; this can lead to an underestimation of critical infrastructure risks (e.g., dams, levees, dikes, and reservoirs). Here, we identify and characterize consecutive dry and wet extreme (CDW) events using the Standardized Precipitation Evapotranspiration Index, assess their multi-hazard hydrologic risks employing copula models, and investigate teleconnections with large-scale climate variability. We identify hotspots of CDW events in North America, Europe, and Australia where the total numbers of CDW events range from 20 to 30 from 1901 to 2015. Decreasing trends in recovery time (i.e., time between termination of dry extreme and onset of wet extreme) and increasing trends in dry and wet extreme severities reveal the intensification of CDW events over time. We quantify that the joint exceedance probabilities of dry and wet extreme severities equivalent to 50-year and 100-year univariate return periods increase by several folds (up to 20 and 54 for 50-year and 100-year return periods, respectively) when CDW events and their associated dependence are considered compared to their independent and isolated counterparts. We find teleconnections between CDW and Niño3.4; at least 80% of the CDW events are causally linked to Niño3.4 at 50% of the grid locations across the hotspot regions. This study advances the understanding of multi-hazard hydrologic risks from CDW events and the presented results can aid more robust planning and decision-making.

     
    more » « less